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Investigation of the stability of plane shock waves as regards nonuni- 
form perturbations was first performed by D'yakov [1]. He obtained 
criteria for stability, and showed that perturbations grow exponentially 
with time in the case of instability. Iordanskii [2] has shown that in 
the case of stability, the perturbations are attenuated according to a 
power law. However, the stability criteria of [2] do not agree with the 
results of [1]. Kontorovieh [3] has explained the cause of the apparent 
discrepancies, and asserts the correcmess of the criteria of [2]. A 
power law for the attenuation of perturbations has also been obtained 
in [4, 5] under a somewhat different formulation of the boundary con- 
ditions. 

The Cauchy problem with perturbations is examined in w of this paper, 
results are obtained for cases of practical interest, and the asymptotic 
behavior is investigated. 

In w the effect of a low viscosity on the development of perturba- 
tions is examined. It is shown that when t--~ co the amplitude of per- 
turbations is attenuated mainly as e x p ( - a t ) ,  where a > 0 does not 
depend on the form of the boundary conditions at the shock wave front. 
The results of w were used in processing the experimental data of [6], 
which made it possible to determine the viscosity of a number of sub- 
stances at high pressure. 

w L e t  a p l a n e  s h o c k  w a v e  m o v e  w i t h  c o n s t a n t  

s p e e d  v 0 in  a u n i f o r m  m a t e r i a l  o c c u p y i n g  t he  w h o l e  of 

s p a c e .  W e  s h a l l  c h o o s e  a s y s t e m  of c o o r d i n a t e s  in  

w h i c h  t h e  w a v e  f r o n t  i s  a t  r e s t  a n d  c o i n c i d e s  w i t h  y z -  

p l a n e .  T h e  x - a x i s  i s  a l o n g  t h e  d i r e c t i o n  of m o t i o n  of 

t h e  g a s .  A h e a d  of t he  w a v e  t h e  g a s  h a s  p r e s s u r e  Po, 

d e n s i t y  Po, v e l o c i t y  of s o u n d  co, and  m a s s  v e l o c i t y  Vo. 

T h e  c o r r e s p o n d i n g  v a l u e s  b e h i n d  t h e  f r o n t  a r e  p, p,  
c ,  a n d  v. S i n c e  v 0 > % ,  p e r t u r b a t i o n l o c a l i z e d  in  a f i n i t e  

r e g i o n  a h e a d  of t he  w a v e  f r o n t  w i l l  be  a b s o r b e d  by  i t  

in  a f i n i t e  t i m e .  B y  c h o o s i n g  t h i s  i n s t a n t  a s  t he  o r i g i n  
of  t i m e ,  we c a n  a s s u m e  t h a t  t h e r e  a r e  no p e r t u r b a -  

t i o n s  a h e a d  of  t h e  w a v e .  W i t h o u t  l o s s  of g e n e r a l i t y ,  

we  c o n f i n e  o u r s e l v e s  to  t h e  c a s e  i n  w h i c h  a l l  q u a n t i -  

t i e s  a r e  i n d e p e n d e n t  of z, and  t he  v e l o c i t y  c o m p o n e n t  

a l o n g  t h e  z - a x i s  i s  z e r o .  T h e  s y s t e m  of e q u a t i o n s  f o r  

s m a l l  p e r t u r b a t i o n s ,  d e n o t e d  by  p r i m e s ,  h a s  t he  f o r m  

Ov x' 3v x' �9 i Op' 
at + v - w - ~  + ~ - ~ = 0 '  

Ov u' Ov u' t Op" 
at b v T +  V-~-v  = 0 '  

Op" , ! ~ v  ' Ovy '  "~ 
Ot ~ - v - ~  + O C ' [ ' - 5 ~ + - ' ~ ' )  = 0 "  (1.1)  

T h e  d e n s i t y  p e r t u r b a t i o n  p,  m a y  b e  e l i m i n a t e d  by  

m e a n s  of t he  c o n d i t i o n  f o r  a d i a b a t i c  f low:  

Ot ~- u 0"-~- = c "~- +v---g- Z . (1 .2)  

W e  s h a l l  s o l v e  t he  p r o b l e m  u n d e r  t he  a s s u m p t i o n  
t h a t  a l l  t he  q u a n t i t i e s  d e p e n d  on y a s  exp  ( ik0y).  W e  i n -  

t r o d u c e  the  n o t a t i o n  

6 = - - p  ov 
�9 ( - ~ p ) ~ / ,  ( 1 . 3 )  

w h e r e  j = P0V0 = p v  i s  t h e  m a s s  f lux  d e n s i t y  t h r o u g h t h e  
f r o n t ,  a n d  the  d e r i v a t i v e  of the  s p e c i f i c  v o l u m e  V = 

= 1/p w i t h  r e s p e c t  to  p r e s s u r e  p i s  c a l c u l a t e d  a l o n g t h e  

s h o c k  a d i a b a t .  F o r  a n  i d e a l  g a s  5 = 1 /M~,  w h e r e  

M0 = v0/c0 i s  the  M a c h  n u m b e r ,  d e t e r m i n e d  a s  t h e  
r a t i o  of t he  w a v e  s p e e d  t h r o u g h  t he  co ld  m a t e r i a l  to  

t h e  s p e e d  of s o u n d  in  i t .  L e t  ~(y, t) b e  t he  d i s p l a c e m e n t  

of t he  s h o c k  w a v e  f r o n t  f r o m  the  p l a n e  x = 0, w h e r e  

> 0 i f  t he  f r o n t  i s  s w e p t  a w a y  t o w a r d s  the  c o m p r e s s e d  

g a s  s i d e .  T h e  c o n d i t i o n s  a t  t h e w a v e  f r o n t  o b t a i n e d  in  

[1] m a y  b e  w r i t t e n  a t  x = 0 a s  

(~ V) = v / ,  v / +  ~ t ,  = 0 ,  I 

0~ t - -  6 , 
at ~" 29o-fvT~ vj p = 0. (1 .4)  

W e  a s s i g n  t h e  i n i t i a l  c o n d i t i o n s  a t  t = 0 in  t h e  f o r m  

p' = Vv~h (x) ei~o~, v / =  vf~ (x) e~o~, 

v / =  - -  iv?a (x) e~0~, ~ = ~ e~o~. (1.5) 

F o r  t he  i n i t i a l  d a t a  no t  to  c o n t r a d i c t  the  b o u n d a r y  
c o n d i t i o n s ,  the  f u n c t i o n s f i ( x )  (i = 1, 2, 3) m u s t  s a t i s f y  
r e l a t i o n s  w h i c h  c a n  be  o b t a i n e d  f r o m  (1.1)  a n d  (1.4) :  

1 + 6  
1~ (0) + - - ~  la (0) = O, 

d / s l - [ - k o ( t 2  8 9 1 ) [ , ( 0 ) = 0 .  (1 .6)  
--~-/x=o po 

In a d d i t i o n ,  we  a s s u m e  t h a t  t h e r e  i s  no s o u r c e  

of p e r t u r b a t i o n s  a t  g r e a t  d i s t a n c e s  f r o m  the  w a v e  

f r o n t ,  a n d  t h e r e f o r e  f o r  f i n i t e  t i m e  v a l u e s  a l l  p e r t u r -  

b a t i o n s  m u s t  go  to z e r o  a s  x ~ + ~ .  T h e  C a u c h y  p r o b -  

l e m  f o r  s y s t e m  (1.1)  i s  e a s i l y  s o l v e d  by  m e a n s  of 

the  L a p l a c e  t r a n s f o r m a t i o n .  T o  t h i s  e n d  we t r a n s f o r m  

f r o m  a n  o r i g i n a l f ( x ,  t) to  a t r a n s f o r m f ( x ,  s): 

or3 

t)~. [ (x ,  s) = I [ (x ,  t ) e - s td t .  (1 .7)  t ( x ,  
0 

F o r  b r e v i t y  we  o m i t  t he  f a c t o r  e x p ( i k 0 y )  w h i c h  
g i v e s  r i s e  to n o  d i f f i c u l t i e s .  In  l i e u  of (1 .1)  we  o b t a i n  

f o r  t h e  t r a n s f o r m s  the  s y s t e m  

0 dvx" t dp" sv/  + ~ + -~ T = v[~ (x), 

dry' .~_ iko p,  
s v / +  v d~ ~ - - i v / 3 ( x ) ,  

pr ~----g-~ + = pvSft (x). 

U s i n g  (1 .4) ,  we  o b t a i n  b o u n d a r y  c o n d i t i o n s  f o r  the  

t r a n s f o r m s  a t  x = 0: 

i + 8 _,  0 ,  i k o ( v o - - v ) ~ : v v ' ,  v x ' - 4 - ~ p v  p = 

l --8 ' ~o (1.9)  
s ~ + 2 9 o ( v o _ v )  p = ' 
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Moreover, when x ~ +% all the transformed func- 

tions must go to zero, of Re s > So, where so is a suffi- 

ciently small positive number. 

Applying the method of variation of constants and 

returning to the original functions, we obtain the for- 
mula for the amplitude of displacement of the front 

~(~) = ~z~ ~ ~ -~ -  

(i - -  5) t7 (z)} & + ( l  - - ~ )  zo) - -  2 (1 - -  ~ )  l - -  ~ 

= k o v t ,  z-=p/pc ,  ~ = v / c < t ,  

z = s / k o v  , t o =  ] / ~ z  ~ +  t - - ~ "  . (I.i0) 

T h e  i n t e g r a l  is  t aken  a long  the  v e r t i c a l  s t r a i g h t  
l i n e  ly ing  to the  r i g h t  of a l l  s i n g u l a r i t i e s  of the  s u b i n -  
t e g r a l  e x p r e s s i o n ,  the b r a n c h  b e i n g  c h o s e n  which  fo r  

p o s i t i v e  n u m b e r s  wi l l  g i v e  an  a r i t h m e t i c  v a l u e  of the  
r a d i c a l .  T h e  func t i on  F(z)  is  d e t e r m i n e d  by the  p r o -  
f i l e  of the  i n i t i a l  p e r t u r b a t i o n s  

F (z) = ~ [~  (z* - -  t) h (x) + (t - -  coz) h (x) + 
o 

(1.11) 

The denominator of the subintegral expression in 
(I.I0) contains the function 

D (z) = (t + 6 --213 ~) z 3 + [~ (t - -  b) - -  2 (1 - -  i3~)l z + 

+ ( 1 - - 5 ) ( z - - z )  ] / ~ z  2 + t - - ~ 2 .  (1.12) 

The location of the zeros of D(z) in the plane of the 
complex variable z depends on three dimensionless 

parameters 5, ~, ft. It follows from (1.11) that the func- 

tion F(z) does not go to infinity for any finite z in the 

right half-plane. It is therefore sufficient, in an in- 

vestigation of stability, to examine the special case 

in which only the shock wave front is distorted at time 
zero, and there were no other perturbations for x > 0: 

/~ (x) = / 2  (x) = / 3  (x) = 0 .  (1.13) 

W e  no te  tha t  t h e s e  w e r e  e x a c t l y  the  i n i t i a l  c o n d i -  
t ions  in the  t e s t s  in [6]. T h e n  F (z )  = 0, and (1.10) 
t akes  the  f o r m  

,* e l : z  

_ ~('0 t , ~ o ~ E ~ I ( t + 6 - - 2 ~ ) z ~ +  ,( '0 - ~ = 2~-r 

+ (1 - -  5) zoo - -  2 (1 - -  ~2)1 d z .  ( i . i 4 )  

C o n v e r t i n g  to the  new c o m p l e x  v a r i a b l e  w,  

z = i l~l t  (w - - w - l ) ,  w = z l l ~  + [(z I p~) 2 + ll ' / ' ,  

= l /E,  ~ = (1 - -  [~)/~2, ( 1 . i 5 )  

we ob ta in  

1 (w 

x ( i  + 6 + 2 ~ ) ~ : - - ( 1  + 8- -  2~) 
/ (w2) d w ,  (1.16) 

/ ( z ) = ( t + 6 + 2 1 3 ) x  ~ +  [4ee - ~ ( 1 - 5 ) -  

- - 2  (1 + 6)] z + i + 6 - -  2~.  (1 . i7 )  

The argument T is connected with T by the relation 

T = Ix~ = koct  ] / 1  - -  [~ . ( i . i s )  

The velocity of propagation of a s m a l l  perturbation 

along the surface of the shock wave front is equal to 

(e 2 - v2) I/2 = c(l - fiz)i/2. Therefore the quantity T 

has the meaning of the distance traversed by the sig- 
nal along the wave front surface, measured in the 

units h' = k/27r = i/k0, where X is the wavelength of the 
perturbations. 

Because of the properties of the transformation 

(1.15), the integral in (1.16) must also be calculated 

along the vertical straight line located to the right of 

all singularities of the subintegral function. 

It may be shown [1-3] that if 

;E-g < 6 < i ,  (1.19) 

then  both of the  z e r o s  x 1 and x 2 of the  f u n c t i o n f ( x )  

l i e  w i th in  the  c i r c l e  I xl = 1. T h e  s u b i n t e g r a l  e x p r e s -  

s i o n  in (1.16) s a t i s f i e s  the  c o n d i t i o n s  of J o r d a n ' s  

l e m m a  [7], and t h e r e f o r e ,  in the  c a s e  of (1.19),  the  
i n t e g r a l  in (1.16) m a y  be t aken  a l o n g  the  uni t  c i r c l e  

]wl = 1. C a r r y i n g  out  the  n e e e s s a r y  c a l c u l a t i o n s ,  we 
ob t a in  

1 

+ 2Bsx2 @--C' 
0 

(1 .20)  

A = (t + 5 )  2 , B = 2 ( 1 - -  ~ 2 ) _ e ( 1 _  ~ ) ,  

C = (~ ( t ~ 6 )  2 . (1 .21)  

The denominator in (1.20) does not go to zero in the 
entire segment 0 _< x _< I if condition (1.19) is satis- 

fied. It is clear that the function qp(T), determined by 

(1.20), tends to zero when T ~ ~. Therefore (1.19) 

ensures the stability of the shock wave. Because of 

(1.15) the neighborhoods lwl = 1 correspond in the z 
plane to two branch sections in the segment (4i#, ip) 

of the imaginary axis. The ends of the section are the 
branch points of the function w = (fiZz2 + 1 -- fi2)i/z 

The region lw[ > 1 is mapped on the lower sheet 
of the Riemann surface on which the contour of 

integration in (1.14) lies. The region lwl < 1 maps 

onto the upper sheet. The two sheets join along 

the segment (-ip,ig) of the imaginary axis of the z- 

plane. Thus, in the stable case, the asymptotic behav- 
ior of the perturbations is determined by the location 
of the branch points of the subintegral expression in 

(1.14); the poles lying on the other sheetdo notcontri- 
bute to the asymptote. 

We note here, as follows from [1-3], that when one of the eondi- 
tions 5 > 1 or 5 < -(1 + 213) is satisfied, the zeroes of f(x) satisfy the 
inequalities xl > 1 and --1 < x 2 < 1. It follows from (1.16) that there 
is then an exponential growth of the perturbations (absolute instability). 
If 

- -  (t + 2~) < a < (~ - -  # / ( ~  + ~), (1.22) 
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then x~ < - 1 ,  -I < x2 < I. It was shown in [1-3] that then the front 
radiates sound waves, and the surface of the front oscillates according 
to a harmonic law. 

T h e  a s y m p t o t i c  b e h a v i o r  of  q0(T) i s  m o s t  s i m p l y  

o b t a i n e d  f r o m  (1 .11 )  b y  t h e  m e t h o d  of  s t e e p e s t  d e s c e n t s  

a s  

4 ~ ( t  --5) sin ( r  -- ' /~n) 
cO ( T - - ,  c~) ~ [(t + 5 ) e - - z ( l - - 6 ) 1 2  l f 2 ~  (1 .23 )  

If the m a t e r i a l  through which the shock  wave is  
p r o p a g a t i n g  is an idea l  gas  with i s e n t r o p i e  index 7, 
(1.23) t akes  the f o r m  

cO(T--> eo ) ' ~  _ ~  ( -h--~-l- ( h - -  l ) 5 ~ ' /" s i n ( T - -  ~ / ~ a ~ '] 

h r + t \  
= T s r - ~  )" 

(1.24) 

For a s t rong  shock  wave (5 = 0), (1.24) d i v e r g e s .  
Th i s  poin ts  to the fac t  that  the a s y m p t o t i c  b e h a v i o r  of 
~o(T) fo r  a s t r o n g  shock  wi l l  be  s u b s t a n t i a l l y  d i f f e ren t ;  
the a t t enua t ion  wil l  b e  Mower .  The  e x a c t  f o r m u l a  
(1.20) for  a s t r o n g  shock  m a y  be wr i t t en  as  

1 
4 h V - ~ - ~ !  cos (Tz) dx c0(T) = -K [a+ a-(a-s)~,] l/Y-~ ~ " ( 1 . 2 5 )  

Hence  we find that  in the s t r o n g  shock  c a s e  

ep(T--~eo) - -  ( h 2 @ y ' c o s  ( T - - + ) ,  ( 1 . 26 )  

It is curious that for ~ = 2 (h = 3), (1.25) takes the simple form 

(T) = 3"o (T), . (1.27) 

where J0 is a Bessel function. This is evidently due to the fact that in 

this case u = v0 -- v = C. 

In the ideal case in which 5 << 1 and T >> 1, the behavior of ~p(T) 
depends on the relation between 6 and T. In a similar manner to what 

was done in [4, 5], we find that when 6 << 1 and T >>1, the true for- 

mula is 

. h / - r - 4 - r S  
�9 v - 

- c ( l G ) s i n  T + q - -  T , 

z z 

(~) = _~ sin (t~) at, c (.) = ~ ~os (t~) S dt, 
o o 

q = 1/8 ( h  + t )  T 6  ~ . (1.28) 

Here S(z) and C(z) are Fresnel integrals. 
Suppose that a strong enough wave (6 << 1) has traversed a large 

distance, such that T >> 1. If 6 is so small that q << 1, then in this 
phase there will be attenuation of the perturbations according to the 
strong wave law (1.26). With increase of T the parameter q increases. 
When q ~ 1, there will be a noticeable deviation from (1.26), al- 
though attenuation of the perturbations will continue. At this phase of 
the asymptote we should use the more general formula (1.28). For still 
larger values of T. when the parameter q becomes large enough: q >> 
>> 1, and attenuation of the perturbations takes place according to the 
law (1.24). 

In general, in the presence of initial perturbations distributed 
t~oughout the space, the displacement of the shock wave front is de- 
scribed by the formula 

(T) = ~0 (P (T) -}- q) (T) , (1.29) 

where, in accordance with (t.10), 

r = ~ - -  I 2hi JD--~ -exp dz. (1.30) 

The asymptotic behavior of the functions ~o(T) and r is qualita- 
tively the same, but we think that the formulas for ?(T) are more 
cumbersome. We shall bring in' the asymptotic formula for ~0(T) only 
in the ease of a wave in an ideal gas: 

I /h+l ' , ' / '  ~o 
, ( V ) ~  ~ i - N g - )  ae~ [h (~ ) - -h (~ ) - -  

0 

~t koX )]dx " (1.31) 

w The relation for ~(T) obtained in w (see formula (1.20)) was 
checked by experiment [6]. It was noted in the course of the experi- 
ment that changing the linear dimensions while retaining geometric 
similarity did not lead to complete coincidence of the curves in (~, T) 
coordinates. This means that an appreciable role is played by such non- 
modeled parameters as the viscosity of the compressed material. It 
turned out, however, that the curves of ~(T) observed in the similar 
transformation of the system did not differ appreciably. Therefore the 
viscous terms may be considered as a correction in the equations of mo- 
tion. We assume that the material through which the shock wave 
has passed has been stripped of its solidity. We assume also that 
the thermal conductivity and the second viscosity coefficient are zero. 
In the undisturbed flow behind the wave front all the quantities are in- 
dependent of the coordinates and time, and so the condition for adia- 
batic flow is not changed in the linear approximation. When viscosity 
is present we have, in lieu of (1.1), the system of equations 

Ovx' 8v x' I Op" 

{ 4 O~vx' O'ZVx' I 02% ' 

0%' Or '  W !  Op" = 
Ot -]- v -~z  9 Oy 

Op" Op" ( Ov x' 0%" 
at § v ~ + oc~ \ -2~  + ~ ) = o. (2.1) 

As usual, v is the kinematic viscosity. We shall examine the order 

of smallness of the quantities appearing here. If the distortion of the 
wave front is described by an amplitude ~ and wavelength k, the per- 
turbations are of order g / k  with respect to the corresponding un- 
perturbed quantities. In system (2.1) we neglected terms of order 
(g/k)  2. The ratio of the right sides of (2.1) to the left sides as 
regards order of magnitude is v/(vk) = I/R, where R is the Reynolds 
number. The proposed method of allowing for viscosity rests on the 
fact that the right sides of (2,1) are considered to be small: 

t l R =  "~l(v~) , ~  1. (2.2) 

If, in addition, 

~/L ~ t, (2.3) 

the viscous and nonlinear termS may be considered as corrections wh~e 
ratio to one another may be arbitrary. The method of successive ap- 
proximations may be used to calculate each of these corrections. 
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Under complete geometric similarity the displacement of the curve 
~ T )  is due only to viscosity, and therefore onty corrections due to vis- 
cosity ate considered in what follows. We note that condition (2.2) 
is satisfied if, for givenv and v, we take large enough k, while con- 
dition (2.3) will be satisfied if, for a chosen X, we take small enough 

In the derivation of the boundary conditions at the shock wave 
front, we should take into account, in the perturbed region, the fluxes 
of momentum and energy due to viscosity; for x = 0 

Of I --8 
0t -~ 2po (vo - -  v) p' 

,, ~(~_~) ( o%" or,') 
"---'~ 3(~--"I)-~--~') 2 Oz 0 v ' 

, + ~  , , ~ + ~ - 2 ~ , (  o , , j  0 ' , , '~  
v ' + ~ p  = ~ 3 ( 1 - ~ )  2 0~ ov 7" (2.4) 

Since the shock wave front has a finite width a, relations (2.4) will 
be true only when the dimensions of the transition zone are small in 
comparison with the radius of curvature r of the wave front (a << r). For 
a sinusoid with wavelength X and amplitude ~ (such that gs/k<< 1), the 
least radius of curvature is equal to kz/g in order of magnitude, so that 
the condition a << r should be replaced by the inequality a << kz/g. 

The width of the transition zone depends on the state of the ma 7 
terial behind the wave front, for example, on the pressure: a = a(p). 

For a change in pressure of amount p ' ,  the width of the front changes 
by amount a' = p 'da/dp. The function a(p) is smooth enough, so that 
the derivative d In aid In p can be regarded as a quantity of order unity. 
Then, as regards order of magnitude, 

~" I a ~ p'/p ,- ,~t, .  (s.5) 

In order to be able to follow the displacement of the front during 
a change in pressure, the condition a' << ~ must be satisfied. Because 
of (2.5) this inequality may be replaced by a << k. It is evident that 
the condition a << k ensures fulfillment of the inequality a << kz/g. 
In the tests described In [6], conditions (2.2), (2.5), and a << k were 
satisfied with good accuracy. 

It was noted in a recent p@er [8] that (2.4) should contain terms of 
order R "1 (with respect to the left sides), to take account of the shock 
wave structure. The authors of [8], following the method of Zhermen 
and Guiraud, denoted these corrections by R -1/*, where f* is the effec- 
tive value of some quanti ty/(pressure,  velocity, etc. ) in the transi- 
tion zone. The quanti ty/* was calculated in [8] on the assumption 
that the Navier-Stokes equation describes the shock wave structure. 
However, the equations of hydrodynamics are not applicable in this re- 
gion. Moreover, the quantity ]* cannot be calculated using the more 
rigorous kinetic equation, not only while the viscosity and thermal con- 
ductivity are unknown as functions of pressure and temperature, but 
also while the types of interactions between molecules of the material 
are unknown. 

In these conditions an important point is that the viscosity increases 
sharply with pressure. This strong dependence of viscosity on pressure 
leads to the fact that the width of the transition zone, a, wig be small 
in comparison with v/v = MR, where v is the viscosity of the com- 
pressed material far from the wave front. This is confirmed by ex- 
periments [9], in which reflection of light front the front of the shock 
wave was studied. Terms of type f* cannot be taken into account in 
the boundary conditions (2.4) in this case, since their contribution will 
be of order av/v.  

Under the above assumptions, we shall write any quantity / in the 
form f +/~,  where f gives the solution to the probtem with v = 0, and 
f~ is a correction due to viscosity. We can substitute quantities of type 
] ,  which we consider known (see w into the right sides of (2.1) and 
(2.4), and the left sides have only the desired quantities of type fl ,  
since the quantities of type f, calculated without allowance for vis- 

cosity, satisfy the same scheme of linear equations, but without the 
right sides. The initial conditions for all the quantities of t y p e / t  will 
be zero, since the viscosity cannot manifest itself at that time. 

In practice, perturbations were created at the instant a shock wave 

passes the joint between two large specimens made of the same ma- 
terial. One of the specimens had cylindrical grooves with a sinusoidal 
pro/fie at the jointing surface. The depth of the grooves was small 
compared with the period of the sinusoid. This ensured the relative 
smallness of the perturbations. At the instant at which the shock wave 
passed the boundary between the specimens, all the perturbations were 
concentrated into a narrow zone, of which the thickness is of the order 
of the depth of the grooves. Since the perturbations themselves are of 
first order, the function ~(T) (see O.a0)) willbe of second order. There- 
fore further calculations were carried out for the case when only the 
shock wave front was distorted at t = O. Then the amplitude gi of the 
additional displacement gl exp (ik0y) of the wave front due to viscosity, 
following elementary but quite lengthy computations, may be repre- 
sented in the form 

$ vk0 t 
~o ~ ~ ( l - - 6 ) ~ x  

X l ee z [ q (z) - - , .  - ~  i + Q (z) l , 
L ~  ~- = g ~  .i - p - -s ,  (~--7--I ~ ' 

A tz 4 - -  2B~z2 + Ca 
P(z)=,, iz~--2Bza.~-C, O(z) = 3(1 _ ~ ) p ( z  ) (2,6) 

Here q(z) is a polynomial of the third degree, whose exact form 
proves to he unimportant. The constants A, B, and C are determined 
by (i. 21) to be 

Al = - - 8 ~  4 + 2~32(I -t- 6) ( l i  + 5 6 ) - - 3 ( t  -J- b) s, 

/h  = 2.32(1 --  6) --6 (t + 6) --  4~ 4 + 

+ ~ (t - -  6) [3 (t + 6) 2 -  4~ 2 (4  + 6)1, 

C~ = a (t -- 6){8 (3 -- 8D- -  

- -  a (t - -  8) [23 ~ + 3 (l + 6)1}. (2.7)  

In deriving (2.6), the numerators and denominators of the fractions 
were multiplied by the quantity D*(z), obtamed from (1.12) by change 
of the sign of the radical. In particular, P(z) = D(z)D*(z). Therefore, 

the subintegrai expressions in (2.8) and (1.14) have the same singular 
points. When the conditions of stability (1.19) are satisfied (only this 
case is met in practice), the integral in (2.8) may be evaluated along 
both branch sections performed on the segment (--iv, iV) of the ima- 
ginary axis of the z-plane. The first term, containing q(z), gives 
zero. By introducing the new variable x = z/i~, we obtain 

~i vko 4 
~pl(T) = ~o v 91 * s ( l - - 6 ) X  

i .  

x 1/'I - - ~  i sin (Tx)  I + Q (=) p-?-7~7--  ~ F i  - z~ d~,, 
o 

P (x) = Ae~-x ~ + 2Be~:2 -k C, 

Q (x) = A~eex~ + 2Blex 2 + C~ 
3 (l  - ~ )  p (z) (2 .8 )  

The argument T was determined by (1.18). 

The total displacement of the shock wave front, referred to its 
initial value go, is equal to ~o(T) + ~ol(T), where~0(T) is determined 
by (1.20). It is assumed that ~o 1 is smaI1 in comparison with ~0, and 
therefore, where dr  ~ 0, the presence of a small correction to 
the function ~(T) may be regarded as a change of phase 

9 (T) + q?i (T) = q~ (7" -- 0), 

0 ----- - -  9~(T) (rig~tiT) -~ . (2.9) 
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Separating out the dimensionless factor containing the viscosity, 
we represent the phase shift in the form 

'v (Z 2n / 
o = ~ s ~ = -ifo/" (2.1o) 

Here L is the wavelength of the perturbations, and v0 is the speed 
of the shock wave in the cold mater ia l .  

The quantity S, which depends on t ime ,  may  be written, using 
(1.20) and (2.8), as follows: 

1 

S (T) = 2nz~, sin (Tx) [t + Q (z)] x ~rt - - x ~ p - ~  • 
0 

1 

x ~i-2-~ d,~ ]-~ I f  s in(Tx)x  . --  P(x)  J " 
0 

(2.11) 

Formulas (1.20), (2.8), and (2.11) were used in processing the ex- 
perimental  data of [6]. 

We shall turn to examinat ion of the asymptotic law of attenuation 
of the perturbations in the presence of viscosity. It is natural to expect 
that  if the attenuation follows a power law with v = 0, then with v ~ 0  
there will be a stronger exponential at tenuation law. 

We shall go over to the transforms in system (2.1), as was done 
in formulating system (1.18); without loss of generality we may  
restrict examinat ion to the case when there are no initial perturbations 
distributed throughout the  space. As before, we assume that all 
the quantities depend on the coordinate y via the factor exp(ik0y), 
The system of equations for the transforms takes the form 

dVx" t dp" 
sv " + v ~ -t- P d z  - -  

( 4 d'v'x iko dvv" ) 
= v 3 dz~ k~ + -"3- d""-~ ' 

dvu" iko 
~ % ' + v ~  + - - ~ - p ' =  

{ iko dvx" d~vy" 
= v k - g - " 2 ~  "4 d ~  

dp" ~ / dvx" 
sp" + v --d~ -}- Pc ~ ~ 

-g- }0~% ), 

+ikovy') = 0 .  (2.~2) 

We shall solve the system (1.8) for A = A = i = 0 with respect to 
the derivatives 

dv  x" 

dv v" ip" z " 

t dp" ko 
pv dx = ~ X 

(2An) 

Differentiating this zeroth approximation with respect to x, we 
substitute the expressions obtained for the second derivatives into 

a small  viscosity in the form of the right sides of (2.12), which contain 
the factor 

dr"  t d p "  �9 x 

�9 ~ + v - - - ~  + - C - W =  

i ( 3 + ~ )  dry" 1, 
-- k~ 3 ( 1 - - ~ )  dx 2 

dr" iko 
sv v" + v ---yU- + -'-~- p" = 

i dVx" 4 i dp" dov" ] 
= v k o  3 dx 3 k~ pv dz z ~ j ,  

"P" + ~ - ~  + ~ '  ~ - - d ~  + ~o%" } = o . (2.14) 

The solution of this system has the form 

p - - ~  , V x '  ~ , Aetkox Be ~tk,,x vu'=Ce~k~ . (2.15) 

For the amplitudes A, B, and C we obtain the algebraic system 

[~ A '  41~'~ l + R 3 ( i -  ~,) J A +  

t (t 4 ~za 
+ [ z  + a + -~- 3 1 - - ~ '  )] B +  

-~ R gg(i : -zN ~ c = 0 ,  

or\ , I c t  
- - ( 1  + -~ ) A -I- "-ff -~ B + 

t 4 
+ [ z  +ct . - l - - ~ ( y  -}- za ) ] iC=O,  

[ \ ,  Y 
~' (z + a) A + aB -4- iC = 0  ( R =  -~o ) �9 (2.16) 

Here R is the Reynolds number.  
Eliminating the amplitude C from the first two equations with the 

aid of the third, we obtain 

+ z + a + ~ - ( t + a z - -  /? 3 ( f - g ~ ) a ( z + a )  B = 0 ,  

{t +~2(z +a)2+  R-r[a §  + a ) ( ~  + za)]} A-t- 

q- a [z + a q- R71 (1 q- :tz)] B = 0. (2.17) 

It being our intention to obtain the result only with accuracy up to 
R -1 inclusive, we reduce the coefficient of B in the first equation 
of (2.17) by 

l 3 + ~  2 
R 2 3 (t - -  ~2) ~ (i -t- :~z). 

The determinant of system (2.17) is then decomposed into fac- 
tors, one of which has the form z + c~ + R "1 (1 + ccz) and is unsuitable 
for evaluation of the asymptote. Equating the second factor to zero, 
we obtain the quadratic equation 

aa 2 -- 2ba -- c = O, (2.18) 

b=~2 Z _ 3 R  { ~ r  . c = l + ~ , z ~ q - - f f - ~ 2 z .  (2.19) 

We find a new branch point by equating the discriminant b z + a c  
of (2.18) to zero. From the equation obtained, we find, with the re-  
quired accuracy, that when v ;~ 0, the position of the branch point in 
the z-plane  is given by 

2 vko 
z* = _+ i,~ - -  3 (t - -  ~'~) v (2.20) 

The presence here of a negative correction leads to the fact that 
the absolute magnitude of the perturbations attenuates basically 
according to the law 

e (t) = exp ( 2 ko~,t) (2.21) 3 (1 -- ~) 

This result has a simple physical meaning.  



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 25 

We find from system (1.18). with zero right sides, that one of 
the solutions will be the sound wave exp(zT + ik0y + ikx), where 

i k  = k o '  I -- ~2 (2.22) 

The wave vector k with components 

k x  = - -  ko/Ix, k v = ko (2.23) 

corresponds to the point z = --ig. 
In the coordinate system in which the compressed material is at 

rest, the sound frequency f?, the modulus k = (kx ~ + ky~)l/2 of the 
wave vector, and the velocity of sound c are connectdd by the reIa- 
tion f~ = ok. 

Using (2.23) we find 

ko 2 ~ k~ = ~ = -~. (2.24) 

Sound with wave vector (2.23) propagates along the front. In fact, 
the velocity of the sound wave relative to the front is 

u = u + C k x / k .  (2.25) 

By substituting here from (2.23) and (2.24), we find that u = 0. Of 
course, the attenuation of waves whose direction is close to the above 
also determines tbe asymptotic behavior of perturbations at the wave 
front. Using (2.24), (2.21) may be rewritten as: 

F ( t ) = e x p  {--  2 f~2 ] 5- ~ 7 t~. (2.26) 

W e shall compare this result with the general law for attenuation of 
sound, which, with the aid of formula (77.6) of [10], may be written 
in the form 

q)(t)=exp{_~22 4 _~_=_X(T _ 2 _ 5 [ Y v  , ~ , l ) l t  } ( T = ~ v )  . c p  (2.27) 

Here g is the second viscosity coefficient, • is the diffusivity, and 
Op and c v are the specific heats, it is clear that (2.26) is a spe- 
cial case of (2.27) when g = 0 and • = 0. Using this fact, we may at 
once, without further calculation, generalize (2.21) to the case in which 
g e0 and• ~0, 

a)(t)=exp{--2(ik~ +-P~ + X (, -- i)] t}. (2.28) 

thermal conductivity) are sufficiently small. We note that the results 
obtained (formulas (2.21) and (2.28)) are not related to the form of the 
boundary conditions (2.4). 

In conclusion, the author expresseshis gratitude to A. D. Sakharov 
for valuable advice, and to A. G. Oleinik and V. N. Mincer for use- 
ful discussions. The author also thanks G. I. Barenblatt, L. A. Galin, 
and others who took part in a seminar at the Institute for Problems in 
Mechanics, for their interesting discussion and valuable comments. 
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This is the basic law (neglecting oscillations and the weak power- 
law attenuation) by which the amplitude of perturbations decreases at 
the front of a shock wave, when the dissipation factors (viscosity and 5 J u n e  1966 M o s c o w  


